Fish DNA-modified clays: Towards highly flame retardant polymer nanocomposite with improved interfacial and mechanical performance

نویسندگان

  • Omid Zabihi
  • Mojtaba Ahmadi
  • Hamid Khayyam
  • Minoo Naebe
چکیده

Deoxyribonucleic Acid (DNA) has been recently found to be an efficient renewable and environmentally-friendly flame retardant. In this work, for the first time, we have used waste DNA from fishing industry to modify clay structure in order to increase the clay interactions with epoxy resin and take benefit of its additional thermal property effect on thermo-physical properties of epoxy-clay nanocomposites. Intercalation of DNA within the clay layers was accomplished in a one-step approach confirmed by FT-IR, XPS, TGA, and XRD analyses, indicating that d-space of clay layers was expanded from ~1.2 nm for pristine clay to ~1.9 nm for clay modified with DNA (d-clay). Compared to epoxy nanocomposite containing 2.5%wt of Nanomer I.28E organoclay (m-clay), it was found that at 2.5%wt d-clay loading, significant enhancements of ~14%, ~6% and ~26% in tensile strength, tensile modulus, and fracture toughness of epoxy nanocomposite can be achieved, respectively. Effect of DNA as clay modifier on thermal performance of epoxy nanocomposite containing 2.5%wt d-clay was evaluated using TGA and cone calorimetry analysis, revealing significant decreases of ~4000 kJ/m2 and ~78 kW/m2 in total heat release and peak of heat release rate, respectively, in comparison to that containing 2.5%wt of m-clay.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Stability of Imidazolium Modified Clay and Tgddm-based Epoxy Nanocomposites

High performance epoxy resin (tetra-glycidyl-4,4’diamino-diphenyl methane-TGDDM) is brittle and is sensitive to moisture absorption and thermooxidative effects. An approach to mitigate polymer sensitivity towards moisture and thermal effects is to add clay. The addition of clay to resin systems (e.g. diglycidyl ether bisphenol A-DGEBA) has often yielded an overall improvement in properties of t...

متن کامل

Key Role of Reinforcing Structures in the Flame Retardant Performance of Self-Reinforced Polypropylene Composites

The flame retardant synergism between highly stretched polymer fibres and intumescent flame retardant systems was investigated in self-reinforced polypropylene composites. It was found that the structure of reinforcement, such as degree of molecular orientation, fibre alignment and weave type, has a particular effect on the fire performance of the intumescent system. As little as 7.2 wt % addit...

متن کامل

Current Advances in the Carbon Nanotube/Thermotropic Main-Chain Liquid Crystalline Polymer Nanocomposites and Their Blends

Because of their extraordinary properties, such as high thermal stability, flame retardant, high chemical resistance and high mechanical strength, thermotropic liquid crystalline polymers (TLCPs) have recently gained more attention while being useful for many applications which require chemical inertness and high strength. Due to the recent advance in nanotechnology, TLCPs are usually compounde...

متن کامل

Nanoparticle networks reduce the flammability of polymer nanocomposites.

Synthetic polymeric materials are rapidly replacing more traditional inorganic materials, such as metals, and natural polymeric materials, such as wood. As these synthetic materials are flammable, they require modifications to decrease their flammability through the addition of flame-retardant compounds. Environmental regulation has restricted the use of some halogenated flame-retardant additiv...

متن کامل

A Fast Method for Synthesis Magnesium Hydroxide Nanoparticles, Thermal Stable and Flame Retardant Poly vinyl alcohol Nanocomposite

Magnesium hydroxide nanostructures as an effective flame retardant were synthesized by a facile and rapid microwave reaction. The effect of different surfactants such as cationic, anionic and polymeric on the morphology of magnesium hydroxide nanostructures was investigated. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016